
Solving Graph Theory Problems Using

Recon�gurable Pipelined Optical Buses

Keqin Li1, Yi Pan2, and Mounir Hamdi3

1 Dept. of Math & Computer Sci., State Univ. of New York, New Paltz, NY 12561
li@mcs.newpaltz.edu

2 Dept. of Computer Science, University of Dayton, Dayton, OH 45469
pan@cps.udayton.edu

3 Dept. of Computer Sci., Hong Kong Univ. of Sci. & Tech., Kowloon, Hong Kong
hamdi@cs.ust.hk

Abstract. We solve a number of important and interesting problems
from graph theory on a linear array with a recon�gurable pipelined
optical bus system. Our algorithms are based on fast matrix multi-
plication and extreme value �nding algorithms, and are currently the
fastest algorithms. We also distinguish the two cases where weights have
bounded/unbounded magnitude and precision.

1 Introduction

It has been recognized that many important and interesting graph theory prob-
lems can be solved based on matrix multiplication. A representative work is a
parallel matrix multiplication algorithm on hypercubes, which has time complex-
ity O(logN) on an N3-processor hypercube for multiplying two N �N matrices
[3]. By using this algorithm, many graph problems can be solved in O((logN)2)
time on an N3-processor hypercube. Since the summation of N values takes
O(logN) time even on a completely connected network, further reduction in the
time complexity seems di�cult due to the limited communication capability of
static networks used in distributed memory multicomputers.

The performance of parallel algorithms on shared memory multiprocessors,
e.g., PRAMs, can be much better. For instance, on a CRCW PRAM, a boolean
matrix product can be calculated in constant time by using O(N3) processors.
This implies that the transitive closure and many related problems of directed
graphs can be solved in O(logN) time by using N3 processors [5]. Since a gen-
eral matrix multiplication takes O(logN) time even on a PRAM, the all-pairs
shortest problem requires O((logN)2) time, no matter how many processors are
used.

Using recon�gurable buses, a number of breakthrough have been made. For
instance, a constant time algorithm for matrix multiplication on a recon�gurable
mesh was reported in [18]. However, the number of processors used is as many as
N4. It is also known that the transitive closure as well as other related problems
can be solved in constant time on a recon�gurable mesh [20]. However, the



algorithm only works for undirected graphs, while the problem is de�ned on
directed graphs.

The recent advances in optical interconnection networks have inspired a great
interest in developing new parallel algorithms for classic problems [9]. Pipelined
optical buses can support massive volume of data transfer simultaneously and
realize various communication patterns. An optical bus can also implement some
global operations such as calculating the summation and �nding the extreme
values of N data items in constant time. Furthermore, an optical interconnection
can be recon�gured into many subsystems which can be used simultaneously to
solve subproblems. The reader is referred to [10, 16] for more detailed discussion
on these issues.

In this paper, we solve graph theory problems on the LARPBS (linear ar-
rays with recon�gurable pipelined bus system) computing model. (LARPBS
was �rst proposed in [15, 16], and a number of algorithms have been developed
on LARPBS [4, 7, 8, 10{12, 14, 15, 17].) We use matrix multiplication algorithms
as subroutines. We show that when the weights are real values with bounded
magnitude and precision, the all-pairs shortest paths problem for weighted di-
rected graphs can be solved in O(logN) time by using O(N3) processors. If the
weights have unbounded magnitude and precision, the problem can be solved in
O(logN) time with high probability by using O(N3) processors. The transitive
closure problem for directed graphs can be solved in O(logN) time by using
O(N3= logN) processors. Other related problems are also discussed. These al-
gorithms are currently the fastest.

2 Recon�gurable Pipelined Optical Buses

A pipelined optical bus system uses optical waveguides instead of electrical sig-
nals to transfer messages among electronic processors. In addition to the high
propagation speed of light, there are two important properties of optical pulse
transmission on an optical bus, namely, unidirectional propagation and pre-
dictable propagation delay. These advantages of using waveguides enable syn-
chronized concurrent accesses of an optical bus in a pipelined fashion [2, 6]. Such
pipelined optical bus systems can support a massive volume of communications
simultaneously, and are particularly appropriate for applications that involve in-
tensive regular or irregular communication and data movement operations such
as permutation, one-to-one communication, broadcasting, multicasting, multiple
multicasting, extraction and compression. It has been shown that by using the
coincident pulse addressing technique, all these primitive operations take O(1)
bus cycles, where the bus cycle length is the end-to-end message transmission
time over a bus [10, 16]. (Remark. To avoid controversy, let us emphasize that in
this paper, by \O(f(p)) time" we mean O(f(p)) bus cycles for communication
plus O(f(p)) time for local computation. )

In addition to supporting fast communications, an optical bus itself can be
used as a computing device for global aggregation. It was proven in [10, 16]
that by using N processors, the summation of N integers or reals with bounded



magnitude and precision, the pre�x sums of N binary values, the logical-or and
logical-and of N Boolean values can be calculated in constant number of bus
cycles.

A linear array with a recon�gurable pipelined bus system (LARPBS) con-
sists of N processors P1, P2, ..., PN connected by a pipelined optical bus. In
addition to the tremendous communication capabilities, an LARPBS can also
be partitioned into k � 2 independent subarrays LARPBS1, LARPBS2, ...,
LARPBSk, such that LARPBSj contains processors Pij�1+1, Pij�1+2, ..., Pij ,
where 0 = i0 < i1 < i2 � � � < ik = N . The subarrays can operate as regular
linear arrays with pipelined optical bus systems, and all subarrays can be used
independently for di�erent computations without interference (see [16] for an
elaborated exposition).

The above basic communication, data movement, and aggregation operations
provide an algorithmic view on parallel computing using optical buses, and also
allow us to develop, specify, and analyze parallel algorithms by ignoring optical
and engineering details. These powerful primitives that support massive parallel
communications plus the recon�gurability of optical buses make the LARPBS
computing model very attractive in solving problems that are both computation
and communication intensive.

3 Matrix Multiplication

The problem of matrix multiplication can be de�ned in a fairly general way. Let
S be a set of data with two binary operators � and 
. Given two N�N matrices
A = (aij) and B = (bjk), where aij 2 S, and bjk 2 S, for all 1 � i; j; k � N , the
product C = AB = (cik) is de�ned as

cik = (ai1 
 b1k)� (ai2 
 b2k)� � � � � (aiN 
 bNk);

for all 1 � i; k � N .
Several methods that parallelize the standard matrix multiplication algo-

rithm have been developed on LARPBS by using communication capabilities of
optical buses [10]. As a matter of fact, we can establish the following general
result.

Lemma 1. The product of two N �N matrices can be calculated in O(T ) time
by using N2M processors, assuming that the aggregation x1� x2� � � � �xN can
be calculated in O(T ) time by using M � 1 processors.

The Appendix gives the implementation details of the generic matrix mul-
tiplication algorithm of Lemma 1. Compared with the results in [10], Lemma
1 is more general in two ways. First, while only numerical and logical data are
considered in [10], Lemma 1 is applicable to arbitrary data set S and operations
� and 
. Second, Lemma 1 covers a wide range of processor complexity. For ex-
ample, if S contains real numbers whose magnitude and precision are bounded,
and 
 and � are numerical multiplication and addition, then the summation of
N reals can be calculated in O(N=M) time byM processors, where 1 �M � N ,



which implies that matrix multiplication can be performed in O(N=M) time by
N2M processors for all 1 �M � N . In particular, matrix multiplication can be
performed

{ in O(N) time by N2 processors;
{ in O(1) time by N3 processors.

These results were developed in [10].
For boolean matrices, where S is the set of truth values, and 
 is the logical-

and, and � is the logical-or, a di�erent approach has been adopted. The method
is to parallelize the Four Russians' Algorithm, with the following performance
[7].

Lemma 2. The product of two N�N boolean matrices can be calculated in O(1)
time by using O(N3= logN) processors.

4 Finding Extreme Values

One instance of � is to �nd the minimum of N data. This operation is used in
several graph problems.

Let S be the set of real values. The following result is obvious, since even the
radix sorting algorithm can be implemented on an LARPBS in constant time by
using N processors when the magnitude and precision are bounded [16].

Lemma 3A. The minimum value of N data with bounded magnitude and pre-
cision can be found in O(1) time by using N processors.

When the reals have unbounded magnitude or precision, di�erent approaches
are required. One approach is to use more processors. It is obvious that by using
N2 processors, the minimum can be found in constant time by making all the
possible comparisons [17]. The method can be easily generalized to the following,
using the same method in PRAM [19].

Lemma 3B. The minimum value of N data with unbounded magnitude and
precision can be found in O(1) time by using N1+� processors, where � > 0 is
any small constant.

By using the above method in Lemma 3B as a subroutine, the well known
doubly logarithmic-depth tree algorithm [5] has been implemented on LARPBS,
that can �nd the minimum of N data in O(log logN) time by using N processors
[16]. The number of processors can easily be reduced by a factor of O(log logN).

Lemma 3C. The minimum value of N data items with unbounded magnitude
and precision can be found in O(log logN) time, by using N= log logN proces-
sors.

The third method to handle general real values with unbounded magnitude
and precision is to use randomization, as shown by the following lemma [17, 19].



Lemma 3D. The minimum value of N data with unbounded magnitude and
precision can be found in O(1) time with high probability (i.e., with probability
1�O(1=N�) for some constant � > 0) by using N processors.

By Lemma 1 and Lemmas 3A-3D, we have

Theorem 4.When � is the \min" operation, the product of two N�N matrices
can be calculated in O(1) time by using N3 processors, if the matrix entries are
of bounded magnitude and precision. For matrix entries of unbounded magnitude
and precision, the problem can be solved

{ in O(1) time by using N3+� processors;
{ in O(log logN) time by using N3= log logN processors;
{ in O(1) time with high probability by using N3 processors.

5 Repeated Squaring

It turns out that to solve graph theory problems, we need to calculate the Nth
power of an N �N matrix A. This can be obtained by dlogNe successive squar-
ing, i.e., calculating A2, A4, A8, and so on. Such a computation increases the
time complexities in Theorem 4 by a factor of O(logN).

Theorem 5. When � is the \min" operation, the N th power of an N � N
matrix can be calculated in O(logN) time by using N3 processors, if the matrix
entries are of bounded magnitude and precision. For matrix entries of unbounded
magnitude and precision, the problem can be solved

{ in O(logN) time by using N3+� processors;
{ in O(logN log logN) time by using N3= log logN processors;
{ in O(logN) time with high probability by using N3 processors.

The last claim in Theorem 5 needs more explanation. In one matrix multi-
plication, there are N2 simultaneous computation of minimum values using the
Monte Carlo method in Lemma 3D. Since the algorithm in Lemma 3D has fail-
ure probability O(1=N�), the failure probability of one matrix multiplication is
O(N2=N�) = O(1=N��2). Since this Monte Carlo matrix multiplication is per-
formed for dlog(N � 1)e times, the success probability of the all-pairs shortest
paths computation is

�
1�O

�
1

N��2

��logN

= 1�O

�
logN

N��2

�
= 1�O

�
1

N��2��

�
;

for any � > 0. The above argument implies that we need � (in Lemma 3D)
to be no less than, say, 3. Fortunately, this can be easily achieved because a
Monte Carlo algorithm which runs in O(T (N)) time with probability of success
1�O(1=N�) for some constant � > 0 can be turned into a Monte Carlo algorithm
which runs in O(T (N)) time with probability of success 1 � O(1=N�) for any
large constant � > 0 by running the algorithm for d�=�e consecutive times and
choosing a one that succeeds without increasing the time complexity.



6 All-Pairs Shortest Paths

Let G = (V;E;W ) be a weighted directed graph, where V = fv1; v2; :::; vNg is a
set of N vertices, E is a set of arcs, and W = (wij ) is an N �N weight matrix,
i.e., wij is the distance from vi to vj if (vi; vj) 2 E, and wij =1 if (vi; vj) 62 E.
We assume that the weights are real numbers, whose magnitude and precision
can be bounded or unbounded. The all-pairs shortest paths problem is to �nd
D = (dij), an N �N matrix, where dij is the length of the shortest path from
vi to vj along arcs in E.

De�ne D(k) = (d
(k)
ij ) be an N � N matrix, where d

(k)
ij is the length of the

shortest path from vi to vj that goes through at most (k � 1) intermediate
vertices. It is clear that D(1) =W , and D(k) can be obtained from D(k=2) by

d
(k)
ij = min

l
(d

(k=2)
il + d

(k=2)
lj );

where k > 1, and 1 � i; j; l � N . Such a computation can be treated as a matrix
multiplication problem D(k) = D(k=2)D(k=2), where 
 is the numerical addition
operation +, and � is the \min" operation. It is also clear that D = D(N�1), so
that we can apply Theorem 5.

Theorem 6. The all-pairs shortest paths problem for a weighted directed graph
with N vertices can be solved in O(logN) time by using N3 processors, if the
weights are of bounded magnitude and precision. For weights of unbounded mag-
nitude and precision, the problem can be solved

{ in O(logN) time by using N3+� processors;

{ in O(logN log logN) time by using N3= log logN processors;

{ in O(logN) time with high probability by using N3 processors.

6.1 Related Problems

It is well known that [1, 3] there are many other interesting graph theory prob-
lems very closely related to the all-pairs shortest paths problem in the sense
that the solution to the all-pairs shortest paths problem can be used to easily
assemble the solutions to these problems. The following corollary gives a list of
such problems, and the reader is referred to [3] for more details of these prob-
lems. All these problems can be solved on LARPBS with the time and processor
complexities speci�ed in Theorem 6.

Corollary 7. All the following problems on a weighted directed graph with N
vertices can be solved with the same time and processor complexities in Theorem
6: radius, diameter, and centers, bridges, median and median length, shortest
path spanning tree, breadth-�rst spanning tree, minimum depth spanning tree,
least median spanning tree, max gain, topological sort and critical paths.



7 Minimum Weight Spanning Tree

Let G = (V;E;W ) be a weighted undirected graph, where V = fv1; v2; :::; vNg
is a set of N vertices, E is a set of edges, and W = (wij ) is an N � N weight
matrix, i.e., wij = wji is the cost of the edge fvi; vjg 2 E, and wij = 1 if
fvi; vjg 62 E. It is assumed that the edge costs are distinct, with ties broken
using the lexicographical order. The minimum weight spanning tree problem is
to �nd the unique spanning tree of G such that the sum of costs of the edges in
the tree is minimized.

It was shown in [13] that the minimum weight spanning tree problem can be
solved in the same way as that of the all-pairs shortest paths problem. Let the

cost of a path be the highest cost of the edges on the path. De�ne C(k) = (c
(k)
ij )

to be an N �N matrix, where c
(k)
ij is the shortest path from vi to vj that passes

through at most (k � 1) intermediate vertices. Then, we have c
(1)
ij = wij , and

c
(k)
ij = min

l
(max(c

(k=2)
il ; c

(k=2)
lj ));

for all k > 1, and 1 � i; j; l � N . Such a computation can be treated as a matrix
multiplication problem C(k) = C(k=2)C(k=2), where 
 is the \max" operation,
and � is the \min" operation. Once C(N�1) is obtained, it is easy to determine
the tree edges, namely, fvi; vjg is in the minimum weight spanning tree if and

only if c
(N�1)
ij = wij .

Theorem 8. The minimum weight spanning tree problem for a weighted undi-
rected graph with N vertices can be solved in O(logN) time by using N3 pro-
cessors, if the weights are of bounded magnitude and precision. For weights of
unbounded magnitude and precision, the problem can be solved

{ in O(logN) time by using N3+� processors;
{ in O(logN log logN) time by using N3= log logN processors;
{ in O(logN) time with high probability by using N3 processors.

The spanning tree problem for undirected graphs is a special case of the
minimum weight spanning tree problem in the sense that wij = wji = 1 for an
edge fvi; vjg 2 E. Since all the weights are of bounded magnitude, we have

Theorem 9. The spanning tree problem for an undirected graph with N vertices
can be solved in O(logN) time by using N3 processors.

8 Transitive Closure

Let G = (V;E) be a directed graph, and AG be the adjacency matrix of G, which
is an N �N boolean matrix. Let A�

G be the adjacency matrix of G's transitive
closure. By applying Lemma 2, the following result was shown in [7].

Theorem 10. The transitive closure of a directed graph with N vertices can be
found in O(logN) time by using O(N3= logN) processors.



9 Strong Components

A strong component of a directed graph G = (V;E) is a subgraph G0 = (V 0; E0)
of G such that there is path from every vertex in V 0 to every other vertex in V 0

along arcs in E0, and G0 is maximal, i.e., G0 is not a subgraph of another strong
component of G.

To �nd the strong components of G, we �rst calculate A�

G = (a�ij), where
a�ij = 1 if there is a path from vi to vj , and a�ij = 0 otherwise. Then, vi and vj
are in the same component if and only if a�ij = a�ji = 1, for all 1 � i; j � N .
Based on A�

G, we construct C = (cij), where cij = 1 if vi and vj are in the same
component, and cij = 0 otherwise. If the strong components are represented in
such a way that every vertex vi remembers the vertex vs(i) with the smallest
index s(i) in the same component, then s(i) is the minimum j such that cij = 1,
where 1 � j � N . The construction of C and the �nding of the s(i)'s can be
performed on an N2-processor LARPBS in O(1) time.

Theorem 11. The strong components of a directed graph with N vertices can
be found in O(logN) time by using O(N3= logN) processors.

The connected component problem for undirected graphs is just a special
case of the strong component problem for directed graphs.

Theorem 12. The connected components of an undirected graph with N vertices
can be found in O(logN) time by using O(N3= logN) processors.

10 Summary and Conclusions

We have considered fast parallel algorithms on the model of linear array with
a recon�gurable pipelined bus system for the following important graph theory
problems:

{ All-pairs shortest paths;
{ Radius, diameter, and centers;
{ Bridges;
{ Median and median length;
{ Shortest path spanning tree;
{ Breadth-�rst spanning tree;
{ Minimum depth spanning tree;
{ Least median spanning tree;
{ Max gain;
{ Topological sort and critical paths;
{ Minimum weight spanning tree;
{ Spanning tree;
{ Transitive closure;
{ Strong components;
{ Connected components.

Our algorithms are based on fast matrix multiplication and extreme value �nding
algorithms, and are currently the fastest algorithms.



Appendix. Implementation Details

We now present the implementation details of the generic matrix multiplication
algorithm of Lemma 1. The algorithm calculates the product C = AB = (cik)
of two N � N matrices A = (aij) and B = (bjk) in O(T ) time by using N2M
processors, assuming that the aggregation x1 � x2 � � � � � xN can be calculated
in O(T ) time by using M processors.

For convenience, we label the N2M processors using triplets (i; j; k), where
1 � i; j � N , and 1 � k � M . Processors P (i; j; k) are ordered in the linear
array using the lexicographical order. Let P (i; j; �) denote a group of consecutive
processors P (i; j; 1), P (i; j; 2), ..., P (i; j;M). It is noticed that the original system
can be recon�gured into N2 subsystems, namely, the P (i; j; �)'s. Each processor
P (i; j; k) has three registers A(i; j; k), B(i; j; k), and C(i; j; k).

We start with the case where M � N . The input and output data layout are
speci�ed as follows. Initially, elements aij and bji are stored in registers A(1; i; j)
and B(1; i; j) respectively, for all 1 � i; j � N . If we partition A into N row
vectors A1, A2, ..., AN , and B into N column vectors B1, B2, ..., BN ,

A =

2
6664
A1

A2

...
AN

3
7775 ; B = [B1; B2; :::; BN ];

then the initial data distribution is as follows:

P (1; 1; �) P (1; 2; �) � � � P (1; N; �)
(A1; B1) (A2; B2) � � � (AN ; BN )

where other processors are not shown here for simplicity, since they do not carry
any data initially. When the computation is done, cij is found in C(1; i; j). If we
divide C into N row vectors C1, C2, ..., CN ,

C =

2
6664
C1

C2

...
CN

3
7775 ;

then the output layout is

P (1; 1; �) P (1; 2; �) � � � P (1; N; �)
(C1) (C2) � � � (CN )

Such an arrangement makes it easy for C to be used as an input to another
computation, e.g., repeated squaring.

The algorithm proceeds as follows. In Step (1), we change the placement
of matrix A in such a way that element aij is stored in A(i; 1; j), for all 1 �



A Generic Matrix Multiplication Algorithm on LARPBS

for 1 � i; j � N do in parallel // Step (1). One-to-one communication.

A(i; 1; j) A(1; i; j)
endfor

for 1 � i; k � N do in parallel // Step (2). Multiple multicasting.

A(i; 2; k); A(i; 3; k); :::; A(i; N; k) A(i; 1; k)
endfor

for 1 � j; k � N do in parallel

B(2; j; k); B(3; j; k); :::; B(N; j; k) B(1; j; k)
endfor

for 1 � i; j; k � N do in parallel // Step (3). Local computation.

C(i; j; k) A(i; j; k)
 B(i; j; k)
endfor

for 1 � i; j � N do in parallel // Step (4). Aggregation.

C(i; j; 1) C(i; j; 1)� C(i; j; 2)� � � � � C(i; j; N)
endfor

for 1 � i � N , 2 � j � N , do in parallel // Step (5). One-to-one communi.

C(1; i; j) C(i; j; 1)
endfor

i; j � N . This can be accomplished by a one-to-one communication. After such
replacement, we have the following data distribution,

P (1; 1; �) P (1; 2; �) � � � P (1; N; �)
(A1; B1) (A2; B2) � � � (AN ; BN)

P (2; 1; �) P (2; 2; �) � � � P (2; N; �)
(A2;�) (�;�) � � � (�;�)

...
...

. . .
...

P (N; 1; �) P (N; 2; �) � � � P (N;N; �)
(AN ;�) (�;�) � � � (�;�)

where the linear array of N2M processors are logically arranged as a two di-
mensional N �N array, and each element in the array stands for a group of M
processors P (i; j; �). The symbol \�" means that the A and B registers are still
unde�ned.

In Step (2), we distribute the rows of A and columns of B to the right pro-
cessors, such that processors P (i; j; �) hold Ai and Bj , for all 1 � i; j � N . This
can be performed using multiple multicasting operations. After multicasting, the



data distribution is as follows:

P (1; 1; �) P (1; 2; �) � � � P (1; N; �)
(A1; B1) (A1; B2) � � � (A1; BN)

P (2; 1; �) P (2; 2; �) � � � P (2; N; �)
(A2; B1) (A2; B2) � � � (A2; BN)

...
...

. . .
...

P (N; 1; �) P (N; 2; �) � � � P (N;N; �)
(AN ; B1) (AN ; B2) � � � (AN ; BN)

At this point, processors are ready to compute. In Step (3), P (i; j; k) calcu-
lates aik 
 bkj .

Then, in Step (4), the values C(i; j; k), 1 � k � N , are aggregated by the
M processors in P (i; j; �), for all 1 � i; j � N , and the result cij is in C(i; j; 1).
Here, for the purpose of multiple aggregations, the original system is recon�gured
into N2 subsystems P (i; j; �)'s, for 1 � i; j � N . After calculation, the data
distribution is as follows:

P (1; 1; 1) P (1; 2; 1) � � � P (1; N; 1)
(c11) (c12) � � � (c1N )

P (2; 1; 1) P (2; 2; 1) � � � P (2; N; 1)
(c21) (c22) � � � (c2N )

...
...

. . .
...

P (N; 1; 1) P (N; 2; 1) � � � P (N;N; 1)
(cN1) (cN2) � � � (cNN )

Finally, in Step (5), one more data movement via one-to-one communication
brings the cij 's to the right processors.

It is clear that Steps (1), (2), (3), and (5) are simple local computations
or primitive communication operations, and hence, take O(1) time. Step (4)
requires O(T ) time. Thus, the entire algorithm can be executed in O(T ) time.

In general, when M � 1 and M � N , to store a vector in a group P (i; j; �) of
consecutive processors P (i; j; 1), P (i; j; 2), ..., P (i; j;M), we can divide a vector
of length N into sub-vectors of length dN=Me such that each processor P (i; j; k)
is assigned a sub-vector. This increases the time of Steps (1), (2), (3), and (5)
by a factor of O(N=M). Since T = 
(N=M), the complete algorithm still takes
O(T ) time.



Acknowledgments

Keqin Li was supported by National Aeronautics and Space Administration and the

Research Foundation of State University of New York through NASA/University Joint

Venture in Space Science Program under Grant NAG8-1313 (1996-1999). Yi Pan was

supported by the National Science Foundation under Grants CCR-9211621 and CCR-

9503882, the Air Force Avionics Laboratory, Wright Laboratory, Dayton, Ohio, under

Grant F33615-C-2218, and an Ohio Board of Regents Investment Fund Competition

Grant. Mounir Hamdi was partially supported by the Hong Kong Research Grant

Council under the Grant HKUST6026/97E.

References

1. S.G. Akl, Parallel Computation: Models and Methods, Prentice-Hall, Upper Saddle
River, New Jersey, 1997.

2. D. Chiarulli, R. Melhem, and S. Levitan, \Using coincident optical pulses for par-
allel memory addressing," IEEE Computer, vol. 30, pp. 48-57, 1987.

3. E. Dekel, D. Nassimi, and S. Sahni, \Parallel matrix and graph algorithms," SIAM
Journal on Computing, vol.10, pp.657-673, 1981.

4. M. Hamdi, C. Qiao, Y. Pan, and J. Tong, \Communication-e�cient sorting algo-
rithms on recon�gurable array of processors with slotted optical buses," to appear
in Journal of Parallel and Distributed Computing.

5. J. J�aJ�a, An Introduction to Parallel Algorithms, Addison-Wesley, 1992.
6. S. Levitan, D. Chiarulli, and R. Melhem, \Coincident pulse techniques for multi-

processor interconnection structures," Applied Optics, vol. 29, pp. 2024-2039, 1990.
7. K. Li, \Constant time boolean matrix multiplication on a linear array with a recon-

�gurable pipelined bus system," Journal of Supercomputing, vol.11, no.4, pp.391-
403, 1997.

8. K. Li and V.Y. Pan, \Parallel matrix multiplication on a linear array with a recon-
�gurable pipelined bus system," Proceedings of IPPS/SPDP '99, San Juan, Puerto
Rico, April 12-16, 1999.

9. K. Li, Y. Pan, and S.-Q. Zheng, eds., Parallel Computing Using Optical Intercon-
nections, Kluwer Academic Publishers, Boston, Massachusetts, 1998.

10. K. Li, Y. Pan, and S.-Q. Zheng, \Fast and processor e�cient parallel matrix multi-
plication algorithms on a linear array with a recon�gurable pipelined bus system,"
IEEE Transactions on Parallel and Distributed Systems, vol. 9, no. 8, pp. 705-720,
August 1998.

11. K. Li, Y. Pan, and S.-Q. Zheng, \Fast and e�cient parallel matrix computations
on a linear array with a recon�gurable pipelined optical bus system," in High
Performance Computing Systems and Applications, J. Schae�er ed., pp. 363-380,
Kluwer Academic Publishers, Boston, Massachusetts, 1998.

12. K. Li, Y. Pan, and S.-Q. Zheng, \E�cient deterministic and probabilistic simula-
tions of PRAMs on a linear array with a recon�gurable pipelined bus system," to
appear in Journal of Supercomputing.

13. B.M. Maggs and S.A. Plotkin, \Minimum-cost spanning tree as a path-�nding
problem," Information Processing Letters, vol.26, pp.291-293, 1988.

14. Y. Pan and M. Hamdi, \E�cient computation of singular value decomposition on
arrays with pipelined optical buses," Journal of Network and Computer Applica-
tions, vol.19, pp.235-248, July 1996.



15. Y. Pan, M. Hamdi, and K. Li, \E�cient and scalable quicksort on a linear array
with a recon�gurable pipelined bus system," Future Generation Computer Systems,
vol. 13, no. 6, pp. 501-513, June 1998.

16. Y. Pan and K. Li, \Linear array with a recon�gurable pipelined bus system {
concepts and applications," Journal of Information Sciences, vol. 106, no. 3-4, pp.
237-258, May 1998.

17. Y. Pan, K. Li, and S.-Q. Zheng, \Fast nearest neighbor algorithms on a linear
array with a recon�gurable pipelined bus system," Journal of Parallel Algorithms
and Applications, vol. 13, pp. 1-25, 1998.

18. H. Park, H.J. Kim, and V.K. Prasanna, \An O(1) time optimal algorithm for mul-
tiplying matrices on recon�gurable mesh," Information Processing Letters, vol.47,
pp.109-113, 1993.

19. S. Rajasekaran and S. Sen, \Random sampling techniques and parallel algorithm
design," in Synthesis of Parallel Algorithms, J.H. Reif, ed., pp.411-451, Morgan
Kaufmann, 1993.

20. B.-F. Wang and G.-H. Chen, \Constant time algorithms for the transitive closure
and some related graph problems on processor arrays with recon�gurable bus sys-
tems," IEEE Transactions on Parallel and Distributed Systems, vol.1, pp.500-507,
1990.


